
Enhancing Efficiency with AI-driven Query Automation

Power Automate: A Versatile Tool

Navigating the complexities of reporting can often be a daunting task, especially for
users unfamiliar with coding. While Office 365's Power Automate facilitates some
level of automation, its basic logic can feel restrictive. Enter AI — a dynamic but often
costly solution. However, Deepseek emerges as a game-changer, providing a cost-
effective AI tool that allows seamless integration of complex queries in natural
language within Power Automate. This process not only enhances efficiency but also
democratizes advanced data manipulation, making it accessible to all users.

AI-Powered Query Automation

By integrating Power Automate with the Deepseek API, I have created a seamless
automation system that enhances data accessibility.

User Prompt

“ Give me the top 5 of the
total quantity of products

sold in the year 2019,
whose transaction date
was within 7 days from
their production date”

The user will write a prompt that will be sent to the automation

You are a Power BI expert working for a
company. Your main goal is to generate
dynamic reports based on DAX queries...

The 'Food Inventory' table contains the
following columns:\n\n- 'Food
Inventory'[store_id]: Store identifier.\n-
'Food Inventory'[baked_date]: Date when
the product was baked....

Return the response only in the following
JSON format:\n\n{\n \"dax_example\": \"
<DAX code here>\"\n}\n\n

User Prompt
Then the automation will be triggered. Additionally an AI role prompt will be sent with a precise
instruction of the format of the response. After that, the prompt will be added to a compose to be
sent to the HTTP request.

Give me the top 5 of the total quantity of
products sold in the year 2019, whose
transaction date was within 7 days from
their production date.

In the system we specify the AI Role,
whereas we use the role of user for the
prompt.

Deepseek Request
With the prompts ready, we can send the request to Deepseek by using the API.

The secret key is specified in this area.

replace(replace(outputs('Get_only_respons
e'), '```json', ''), '```', '')

outputs('HTTP')?['body/choices'][0]
['message']['content']

Data Transformation
After getting the response, it is necessary to extract only the DAX query, in consequence, some
transformations are performed:

{
 "dax_example": "EVALUATE TOPN(5,
SUMMARIZE(FILTER('Food Inventory', YEAR('Food
Inventory'[transaction_date]) = 2019 &&
DATEDIFF('Food Inventory'[baked_date], 'Food
Inventory'[transaction_date], DAY) < 7), 'Food
Inventory'[product_id], \"Total Sold\", SUM('Food
Inventory'[quantity_sold])), [Total Sold], DESC)"
}

```json
{
  "dax_example": "EVALUATE TOPN(5,
SUMMARIZE(FILTER('Food Inventory', YEAR('Food
Inventory'[transaction_date]) = 2019 &&
DATEDIFF('Food Inventory'[baked_date], 'Food
Inventory'[transaction_date], DAY) < 7), 'Food
Inventory'[product_id], \"Total Sold\", SUM('Food
Inventory'[quantity_sold])), [Total Sold], DESC)"
}
```

EVALUATE TOPN(5, SUMMARIZE(FILTER('Food
Inventory', YEAR('Food Inventory'[transaction_date]) =
2019 && DATEDIFF('Food Inventory'[baked_date],
'Food Inventory'[transaction_date], DAY) < 7), 'Food
Inventory'[product_id], "Total Sold", SUM('Food
Inventory'[quantity_sold])), [Total Sold], DESC)

json(outputs('Compose_Cleaned_JSON'))
['dax_example']

Run DAX query and send the report
With the DAX query ready, we can send the request to Power BI to obtain our data:

DAX query is sent to Power BI

Then the output is converted into a csv
table.

Finally, the csv is sent through an email.

A file with the csv is created.

